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Artificial neural networks were used to analyze and predict the human immunodeficiency virus 
type 1 reverse transcriptase inhibitors. The training and control sets included 44 molecules 
(most of them are well-known substances such as AZT, dde, etc.). The activities of the molecules 
were taken from literature. Topological indices were calculated and used as molecular 
parameters. The four most informative parameters were chosen and applied to predict activities 
of both new and control molecules. We used a network pruning algorithm and network 
ensembles to obtain the final classifier. Increasing of neural network generalization of the 
new data was observed, when using the aforementioned methods. The prognosis of new 
molecules revealed one molecule as possibly very active. It was confirmed by further biological 
tests. 

Standard Neural Network with 
Back-Propagation Algorithm 

We used back-propagation neural networks (BPNN) 
trained by <5-rule as the pattern recognition method.1 

Shown in Figure 1 is a typical neural network. The 
neurons are designated as circles. The number of layers 
n is arbitrary (usually n = 3). The data are input to A, 
transformed on hidden layers, and output to B. Each 
input layer node corresponds to a single independent 
variable. Similarly, each output layer node corresponds 
to a different dependent variable. Each neuron value 
Oj ranging from 0 to 1 is calculated by eq 1, 

Oj = 1/d + e-*») - Av,), yj = 5 > W - Oj (D 

where O/ are neuron values at the n - 1 layer, w*y is 
the weight of the bond connecting the z'th neuron in 
layer s and the j neuron in the next layer, Qj is a 
threshold value for neuron j , and A is a parameter that 
expresses the nonlinearity of the neuron's operation. 
Usually X and Qj are the same for all neurons in a layer. 
Neural network training is achieved by minimizing an 
error function, E%\, with respect to the bond weights wsy 
until its value becomes small enough (usually 0.01—0.1): 

Egl = £giH) = H ( 0 * -h? (2) 

where the inner summation is over all neurons that are 
considered as output units of the net, tk is the desired 
output upon presentation of pattern p, and the outer 
sum is over patterns of the training set. A generalized 
(5-rule has been used. In this algorithm, bond weights 
wsy starting from small random values are changed by 
a gradient descent method during the training process. 
In these equations, e is a constant called the learning 
rate and rj is a momentum rate. The last constant is 
used to avoid biases in a network during learning. Once 
the training is completed, weights are then held fixed 
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Figure 1. Typical neural network. 

w'dt) = w'fi - 1) + Aw8Jt) 

Aw5Jt) = e-
dEa 

dw'Jt - 1) 
+ v&w'ijit) 

(3) 

(4) 

for the testing mode of network operation. We used 
batch-training, i.e., weight updating was after presenta­
tion of all training patterns. 

One of the main drawbacks of BPNN is an overfitting 
problem.2-4 There is empirical evidence that generali­
zation to novel input patterns is improved by using 
hidden layers with a small number of nodes. In these 
cases, generalization from the training set to novel 
inputs was better when the number of hidden nodes was 
relatively small. A small hidden layer forces the input 
patterns to be mapped through a low-dimensional space, 
enforcing proximities between hidden layer representa­
tions that were not necessarily present in the input 
pattern representations. Only the differences between 
patterns that are most important for decreasing error 
will be preserved as large distances between hidden 
layer patterns. Differences between input patterns that 
are not preserved in the hidden layer representation are 
thereby generalized over completely. Theoretical and 
empirical results regarding learnability, generalization, 
and network size can be found in refs 5 and 6. 

The theoretical architecture for practical tasks of 
networks is generally unknown. One would rather 
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overest imate the network size t h a n underes t imate it. 
Algorithms t h a t adap t the network archi tecture during 
t ra ining and pruning r edundan t nodes (i.e., ne t pruning 
algorithm) have been developed.7 - 9 These algori thms 
el iminate the need to guess an appropriate , init ial 
ne twork archi tecture prior to t ra in ing. We have re­
cently proposed a new simple algorithm.1 0 A simulation 
on three different t a sks shows its efficacy for determin­
ing the theoretically minimal archi tecture of networks 
dur ing learning.1 0 One of the ma in advantages of the 
algori thm is t h a t i t can evaluate the performance of 
inpu t pa ramete r s dur ing t ra in ing and choose the most 
impor tan t ones. The last property is very impor tan t in 
QSAR and SAR studies where a priori is ha rd to 
evaluate the performance of molecular features. Here 
is a brief description of the algori thm. 

P r u n i n g A l g o r i t h m 

We estimated the importance of a neuron (in hidden or input 
layers) according to its sensitivity: 

*-xg-x- (<P2 

" ( W 8 / T(max|u>%.|)2 

The neuron having the greatest value Si exerts the most 
significant influence on all other neurons in the next layer and 
vice versa. So, the importance of a node is measured by how 
much the node is relied upon by higher layer nodes. The 
importance of this definition of the neuron sensitivity is that 
it can be applied to evaluate not only neurons in hidden layers 
but also input parameters. It can be used after completing 
the network training to prune redundant neurons. Tb force a 
network to select the most important nodes, we add the cost 
of all neurons into a global error function: 

E—Egl + E0061 

a E^ = ^LS1-N) 
& i 

where a is the normalization coefficient and N is the number 
of all neurons except the input layer neurons. Extracting N 
helps us analogously normalize E00* for networks with different 
numbers of neurons and visualize the learning process. Add­
ing of E,xst results in adding the next terms into the learning 
rule for weights (if the <5-rule is used): 

Ufji 

Aw'ji = (Aw^)01J -
(W1)

2 

**> (WV 
Ji = W1 

We chose a so that E00St was less in order than the desired 
error of the network AE = 0.1. So, when training is in progress 
and Eg] is large, the cost of nodes is relatively small and 
becomes important only at the end of training. 

When the training is near completion (E « 2AB), we inspect 
all neurons and delete a neuron having the least sensitivity. 
If the neuron is redundant, the error £ first increases but then, 
within 10—300 epochs, the network retrains itself. Retraining 
is fast due to the correct structure of the network, which has 
been formed by the previous learning. After the retraining of 
the network, we repeat our pruning. Conversely, if pruning 
is unsuccessful, we restore the former network, continue 

training for 200-1000 cycles, and repeat the network pruning. 
If even in this case pruning is impossible, we treat our network 
as final. 

However, even the use of networks with the smallest 
architecture may result in an ambiguous generalization for 
new input patterns. The method of neural ensembles is a 
standard algorithm that removes such drawbacks.11 We 
determined the level p of significance of the new molecule 
classification for given classes as described earlier.4 

Learning and Control Sets of Molecules. Forty-four 
inhibitors of human immunodeficiency virus type 1 reverse 
transcriptase (HIV-I RT) were taken from literature12-19 as 
learning (30 compounds) and control (consists of 14 compounds 
randomly chosen, 10, 19, 26, 30, 35, 38, and 42, and taken 
from other sources, 12-16,19 43, and 4417) sets. The activity 
of compounds was rated for two classes: active and inactive 
compounds, according to their activity. Compounds with a 
ratio between their EDso and the ED50 of AZT more than 103 

were considered inactive. Twenty new molecules, synthesized 
and courteously given to us by Visnevskii et al.,20 were 
evaluated as HIV-I RT inhibitors. 

Parameters Used To Represent Molecules. A set of 
about 50 topological indexes served as the input set. It was 
impossible to use all those parameters. Had we used all of 
them, the number of parameters would have been greater than 
the number of input patterns. In such cases, a network is 
trained very quickly but data generalization is rather poor 
because of overfitting. On the other hand, it was impossible 
to use the proposed here pruning algorithm because it would 
have taken a lot of time to prune such a large network. That 
is why we used another method for preliminary evaluation of 
input parameters. All parameters were scaled to unit variance 
and subjected to hierarchial cluster analysis. We used dis­
tances measured according to the median distance method in 
the space with Euclidean metrics. 

This analysis divided all input parameters into six clusters 
that did not overlap with each other. From each cluster, the 
parameter with maximum correlation with the vector of 
molecular activities from the learning set was taken to be used 
in BPNN5S training. Three of six used parameters are our own 
modifications of the Kier's index of molecular paths h% form: 

hx(G) = X ^ i ^ - ^ + i ) " 
1/2 

Here, summation must be done for all paths of length h > 1; 
vi...Vh+i are the degrees of vertexes along a given path. 

(1) This index is calculated by the same equation, but only 
the shortest paths with maximum products of vertex degrees 
are considered. This means that only the shortest paths 
between vertexes are considered and if there are several 
equally short paths between them the one that gives maximum 
product of vertex degrees must be chosen. 

(2) The same with respect to minimum products minus first 
index. 

Three other indexes are based on the connectivity matrix 
introduced by Banish et al.23 This method of calculating the 
connectivity matrix takes into account atom types. Elements 
of such a matrix are derived from the elements of the ordinary 
connectivity matrix by: 

Mi j) = ~M- if A(I1/) = 1, else A'iij) = 0 
n Z£j 

when n represents the bond order and Zi and Zj are the 
numbers of electrons of the ith andj'th atoms. 

A distance matrix based on this principle has also been 
proposed 

D'(ij) = ^A'(k,l) 

where k and I represent a pair of adjacent atoms lying on the 
shortest path from the ith vertex to jth. All such pairs are 
taken into account for a path. If there are several equally 
short paths, the path with minimal sum will be considered. 
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Table 

no. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10* 
11 
12* 

13* 

Journal of Medicinal Chemistry, 1994, 

1. Structure, Descriptors, 

substituent 

X1Y-H; R-OH 
X.Y-H; R-NH2 
X-F; Y-H; R-NH2 
X-F; Y-H; R-OH 
X-H; Y-F; R-NH2 

X1Y-H; R-N3; Z-CH3 
X1Y1R-H; Z-CH3 
X-F; Y,R,Z-H 
X1R-F; Y1Z-H 
X-F; Y1R-H; Z-CH3 
X-F; Y-H; R-N3; Z-CH3 
X1Y-H; R-F; Z-CH3 

O 
Cl C-CH-O-P-O— 

I Cl C-CH—O ' 2 

Vol. 37, No .16 

and Observed Activities of Molecules 

1 

0.01952 
0.0195 
0.0189 
0.0189 
0.0189 

0.000 
0.000 
0.0156 
0.0152 
0.000 
0.000 
0.000 

0.000 

2 

0.941 
0.940 
0.990 
0.990 
0.990 

1.075 
0.993 
0.989 
1.036 
1.044 
1.116 
1.026 

1.23927 

used parameters 

3 

Structure I 
0.0654 
0.0642 
0.0631 
0.0642 
0.0631 

Structure II 
0.0208 
0.0208 
0.0548 
0.0544 
0.0074 
0.0070 
0.0214 

Structure III 
0.0191 

4 

0.01292 
0.01288 
0.01182 
0.01186 
0.01182 

0.01301 
0.01773 
0.01778 
0.01618 
0.01623 
0.01229 
0.01826 

0.00661 

5 

14.201 
14.234 
14.241 
14.209 
14.241 

19.773 
16.720 
17.079 
17.528 
16.716 
19.351 
15.786 

27.095 

6 

7.117 
7.117 
6.777 
6.777 
6.777 

6.473 
5.500 
5.500 
5.823 
5.823 
6.800 
5.625 

8.666 

exp° 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
-
-
-
-
+ 

+ 

Tetko et al. 

ref 

16 
16 
16 
16 
16 

12 
12 
13,14 
13 
13 
14 
19 

19 

1 4 * CH3CHCH3 0 

CH O - C - C H N p—O— 

O M 
0.000 1.267 0.0167 0.00557 28.496 9.969 19 

15* 

16* 

! C H O - C - C H N -
Il I I 
O H i 

-IU-

O H 
CH.O-C-CHll j 

I 
PkCH 

3 

CH—CCL 
I .. 1 

O 

-U-

0.000 

0.0042 

1.240 

1.280 

0.0176 

0.0217 

0.00615 

0.00206 

27.975 

42.410 

9.258 

15.727 

19 

19 

17 
18 
19* 
20 

21 
22 

23 
24 
25 

26* 

27 

28 

29 

30* 

31 

32 

33 
34 

35* 

36 

37 

X1Z-F; R1Y-H 
X1R-F5Y1Z-H 
X-F; R1Y1Z-H 
X1R1Z1Y-H 

Y-H 
Y-F 

Y-H; Z-CH3 
Y-F; Z-CH3 
Z-H; Y-F 

X-s=0;Y- — ' 

X- OAc; Y-

X- OH; Y-

X - - N 3 1 Y - -

X - - N H A c ; Y-

X - = 0 ; Y- —• 

X - - N 3 I Y - H 

X—O; Y-H 
X- OAc; Y-H 

X- - I i OAc; Y- " 

X- OH; Y-H 

X - - i O H ; Y - — 

,OH 

^ O H 

^OH 

,OH 

^ O H 

,OH 

,AcO 

,OH 

0.000 
0.000 
0.0156 
0.0156 

0.0158 
0.0156 

0.000 
0.000 
0.0156 

0.01442 

0.0172 

0.0144 

0.0169 

0.0172 

0.01442 

0.0152 

0.000 
0.000 

0.0172 

0.000 

0.0144 

1.044 
1.039 
0.989 
0.989 

0.934 
0.989 

0.993 
1.044 
0.989 

1.066 

1.113 

1.066 

1.092 

1.120 

1.066 

1.036 

1.013 
1.061 

1.113 

1.013 

1.066 

Structure IV 
0.0141 
0.0370 
0.0293 
0.0293 

Structure V 
0.0302 
0.0301 

Structure VI 
0.0076 
0.0075 
0.0568 

Structure VII 
0.0634 

0.0702 

0.0515 

0.0976 

0.0637 

Structure VIII 
0.0634 

0.0287 

0.0255 
0.0273 

0.0702 

0.0225 

0.0515 

0.01648 
0.01395 
0.01786 
0.01786 

0.01993 
0.01831 

0.01799 
0.01660 
0.01823 

0.01462 

0.01063 

0.01448 

0.01189 

0.00923 

0.01462 

0.01624 

0.01812 
0.01220 

0.01063 

0.01791 

0.01448 

16.515 
44.197 
16.990 
16.990 

16.955 
16.787 

16.648 
16.530 
16.876 

26.053 

45.111 

26.365 

39.193 

55.079 

26.053 

17.443 

27.259 
51.220 

45.111 

27.674 

26.365 

5.823 
6.444 
5.500 
5.500 

5.533 
5.500 

5.500 
5.823 
5.500 

6.111 

7.095 

6.111 

6.900 

7.454 

6.111 

5.823 

5.500 
6.473 

7.095 

5.500 

6.111 

+ 
+ 
+ 

+ 
+ 

+ 

+ 

-

-

-

-

+ 

-

+ 

-

-
-

13 
13 
13 
13 

14 
13 

12 
13 
13 

15 

15 

15 

15 

15 

15 

15 

15 
15 

15 

15 

15 
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Table 1. (Continued) 
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no. 

38» 

39 

40 

41 
42» 

43» 
44» 

Bl 

B2 

B3 

substituent 

X - - ^ - - - 0 " 

X - - N H A c ; Y-H 

X - - N H A c ; Y- — ^ 

X-O 
X-S 

X-NH 
X-CH2 

OCH 

yy% 
CH COH C N = < C H -

OCH3 

OCH 

CH COCH/ ^ OCH. 
3 2 I 3 

CH - C H 
2 I 

I 
OH 

O C H 

N - ^ 3 

CH C O H j C - ? ^ — C H 

N = < 
OCH 

3 

- C H -

I 
OH 

CH. 

I 
OH 

- C H 
2 I 

OH 

- C H , 
I 2 I 

OH 

- C H , I ' 
OH 

1 

used parameters 

2 3 

Structure VIII (Continued) 
0.0169 1.092 0.0976 

0.000 

0.0172 

0.0068 
0.0068 

0.0106 
0.0106 

1.061 0.0265 

1.120 0.0637 

Structure DC 
1.170 0.0349 
1.170 0.0342 

Structure X 
1.124 0.0410 
1.124 0.0388 

New Compounds 
0.0107 1.204 0.0285 

0.0160 

0.0077 

1.191 0.108 

1.110 0.0337 

4 

0.01189 

0.01200 

0.00923 

0.00899 
0.00903 

0.00671 
0.00645 

0.0154 

0.0154 

0.0191 

5 

39.193 

52.219 

55.079 

17.111 
17.069 

25.716 
26.961 

24.500 

17.832 

23.115 

6 

6.900 

6.473 

7.454 

7.380 
7.380 

8.130 
8.130 

6.812 

7.364 

6.368 

exp" 

-

-

-

+ 
+ 

+ 

ref 

15 

15 

15 

18 
18 

17 
17 

20 

20 

20 

° The rated activity of compounds: +, active compounds; —, inactive compounds. * This compound was used in the control set. 

„isrm_ xi . - J • J • xi I J . - J O I . X X I J N N (3) The third index is the analog of index 2, but the degrees 
of vertexes are calculated using the described above connectiv­
ity matrix A'. 

The described above indexes in our opinion somehow reflect 
the symmetry of molecules, although it is not known exactly 
how. Besides the analogs ofhx, the optimized parameter set 
included three other indexes. 

(4) The analog of Balabans24 is as follows: 

i" + 2t3u 
1/2 

W(G) = (JSD'GV'Xn + IX/ + n))/W(G) 

where D'(iJ) is a corresponding element of the D'(G) matrix, 
N is the number of vertexes in the chemical graph, n is the 
number of shortest paths between the ith and jth vertexes, / 
is the number of other shortest paths (between other vertexes) 
that go via the ith andj'th vertexes, and W(G) is the ordinary 
Wiener number. 

(6) The last index is the so-called code for comparison of 
structures:21 

where 

and 

p=Ne-Nv + l 

where Ne and Nv are the numbers of edges and vertexes in 
the chemical graph. The only differences is that we used the 
elements of the D'(G) matrix instead of the elements of the 
D(G) matrix. These four indexes were divided by the number 
of vertexes in the corresponding chemical graph (number of 
non-hydrogen atoms). 

(5) One more index used for BPNN's training has been 
derived from Wiener's number: 

M6(G) = JT^2 

Here u,- is the number of vertices of ith degree, and n is the 
maximum vertex degree in a given molecule. The input 
neurons corresponding to indexes 2 and 6 were pruned as 
redundant during the network's training. 

Calculation Results 
The earliest neural network had 6-10-2 architecture. 

Six neurons in the input layer correspond to the 
beginning number of used molecular parameters and 
two neurons in the output layer to the number of used 
ranks. The network correctly recognized all compounds 
from the learning set. This condition was still fulfilled 
after pruning seven neurons from the hidden layer and 
two neurons (i.e., input molecular parameters) from the 

ij.-joi.xxij
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IX. 

Figure 2. Chemical structures used for inhibitors of HIV-I RT data base. 

Table 2. Numbers of Correct Predictions of the Molecules' 
Activity in 40 Attempts and Final Classification of the 
Molecules by Neural Networks Ensembles for Different 
Architectures of the Net" 

no. 

10 
12 
13 
14 
15 
16 
19 
26 
30 
35 
38 
42 
43 
44 
number of 

uncorrectly or 
unclassified molecules 

neural net architecture 

6-10-2 

38+ 
36+ 
36+ 
4 -
5 -
3 -

40+ 
40+ 
40+ 
40+ 
40+ 
40+ 
40+ 

2 -
4 

6-3-2 

37+ 
216± 
29+ 
12-
nb± 
14-
40+ 
40+ 
40+ 
40+ 
40+ 
40+ 
34+ 
16*± 
5 

4-10-2 

40+ 
40+ 
27+ 
28+ 
196± 
34+ 
40+ 
40+ 
40+ 
40+ 
40+ 
40+ 

1 -
39+ 
2 

4-3-2 

40+ 
40+ 
22»± 
38+ 
39+ 
40+ 
40+ 
40+ 
40+ 
40+ 
40+ 
40+ 

1 -
40+ 

2 

° The final classification of each molecule was at least at the 
level p < 0.1 of significance. b This molecule cannot be classified 
at the level p < 0.1 of significance. 

input layer. The neurons in the hidden layer were 
pruned first. Further pruning resulted in an erroneous 
classification of some molecules from the learning set. 

Table 3. Cytotoxic Effect of Compounds on MT-4 Cell Culture" 

investigated 
compounds 

AZT (6) 
Bl 
B2 
B3 

cytotoxic concentration 
for 50% death Of 

CeIIs(CTC50,10-s M) 

5.3 
58.0 
46.6 
0.078 

" Starting concentration of MT-4 cells was 3 x 1O5ZmL. 

We also tried deleting each parameter from the input 
set, but it also led to wrong predictions of some 
molecules from the learning set. The network 4-3-2 was 
therefore considered as final. The ultimate parameter 
set is shown in Table 1. In all our simulations, the 
learning rate was e = 0.1, the momentum rate was rj = 
0.8, a = 0.01-0.1 (it depends upon the number of 
neurons in the hidden layer), and the initial weights 
were in the range [—0.5, 0.5]. X and Oj were the same 
for all neurons: A = I and Oj = 0. 

We used 40 random starting weight matrices to obtain 
a statistically significant classification. Each attempt 
consisted of 10 thousand or less weight updatings. In 
order to avoid local minimums, we begun our simula­
tions with the 4-5-2 network with consequent pruning 
of two neurons. Even in this case, after pruning, the 
network failed in some tries to correctly recognize all 
molecules from the learning set. We ignored such 
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Table 4. Effect of Compounds on MT-4 Cells Infected by HIV-l/IIIB 

control (infected 
MT-4 cells) IQ-4 

content of viable cells (%) 18.7 37.3 
no. of infected cells (%) 24.9 19.7 
antigen p24 content in 1.98 1.92 

culture fluid (ng/mL) 
RT activity in culture fluid (%) 100.0 84.; 

Table 5. Performance of Different Methods Compared to That 
of Neural Networks 

adaptive linear 
neural fc-nearest least learning 

networks neighbors squares machine 

no. of correctly 30 23 23 25 
classified 
molecules in 
the learning set 
(30 molecules) 

no. of correctly 12 10 11 10 
classified 
molecules in 
the control set 
(14 molecules) 

attempts and generated new ones. Table 2 shows the 
results of the final neural ensembles' classifier. BPNN 
gave good prediction. Only one molecule, 43, from the 
control set was misclassified, and one molecule, 13, 
could not be correctly classified. The activities of other 
molecules were correctly predicted at the level of p < 
0.1. The molecule 13 had the equal probability of being 
classified as both active and inactive. 

To prove the importance of NN pruning for improving 
the generalization performance of networks, we also 
utilized 40 calculations using the primary 6 parameter 
set. The networks had 3 or 10 neurons in the hidden 
layer. The results are shown in Table 2. The predic­
tions of molecules from the control set were worse in 
comparison to those obtained for the diminished pa­
rameters set. It is interesting to note that the number 
of neurons in the hidden layer had no significant 
influence on the generalization performance of BPNN, 
which significantly increased when the most relevant 
parameters were used. 

The activities of 20 new molecules were predicted. 
Only molecule B2 was predicted as active at the level 
of significance p < 0.01. The other molecules were 
predicted at the same level of significance as inactive. 

Biomedical Investigations 
Among 20 new substances, only three were chosen for 

biological testing—B2, the substance that should be 
active according to computer prognosis, and B l and B3, 
the nearest analogs of B2 in chemical structure that 
should not be active according to the prognosis (Table 
1). AZT was used as a reference drug. 

Experiments were conducted on MT-4 lymphocyte 
cultures. For infecting MT-4 cells, the virus-containing 
fluid of the HIV-I chronically infected H9/IIIB human 
T-lymphocyte-passaged cultures was employed. The 
infection multiplicity in the range of 0.05-0.1 logio of 
EPCD50/MT-4 cell was used. The cytopathic effect in 
MT-4 infected cells according to Reed-Muench method 
was determined. 
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measured values 

tested compounds 

Bl(M) B2(M) AZT(M) 

IF5" TcF IF5" To=* IF8" 
521 85J 83^2 78li 69.7 
12.6 3.6 2.8 2.9 2.1 
1.87 0.87 0.77 0.82 0.68 

82.5 20.9 18.7 19.2 17.0 

Table 6. Prediction of Activities of New Molecules by Different 
Methods 

Bl 
B2 
B3 

neural 
networks 

inactive 
active 
inactive 

method 

^-nearest 
neighbors 

inactive 
active 
active 

adaptive 
least 

squares 

inactive 
active 
inactive 

linear 
learning 
machine 

inactive 
inactive 
inactive 

The cytotoxic effect of the compounds was estimated 
in preliminary experiments by the content of viable cells 
in uninfected MT-4 cultures through the use of staining 
in a 0.25% trypan blue solution (Table 3). 

B3 was excluded from further testing because of its 
too high cytotoxicity. That is why we used only B l and 
B2 with reference substance AZT in experiments on 
infected cells. 

Infected MT-4 cells were cultivated in the presence 
of tested compounds at concentrations of 10~4 and 1O-5 

M for 7 days. The cytotoxic effect of the virus on the 
infected MT-4 was estimated by the same method with 
0.25% trypan blue solution. The number of infected 
cells, expressing viral antigens on superficial mem­
branes, was determined by an indirect immunofluores­
cence assay using anti-HrV-1 antibodies.25 The level of 
virus production in cultures was estimated by the 
content of viral antigen p24 in a culture fluid using an 
immunoenzymatic assay.26 The level of virus production 
was also estimated by RT activity in the culture fluid.27 

Data obtained (Table 4) show that the computer 
prognosis is in full compliance with the results of 
biological testing. Substance B2 is approximately as 
active against HrV-1 RT as AZT but 10 times less toxic 
for cells than AZT. 

Conclusion 

The main advantage of neural networks is their 
nonlinear mapping. It is known that three-layer neural 
networks (and also higher layer networks) can ap­
proximate any multidimensional function with given 
accuracy and can exactly implement an arbitrary finite 
training set (a global existence theorem was formulated 
by A. N. Kolmogorov28 and a possible application to 
neural networks was suggested by R. Hecht-Nielsen29). 
Biological phenomena are considered nonlinear by 
nature. Therefore, the contribution of physicochemical 
and substructural parameters to biological activity can 
be nonlinear, and this property of network mapping is 
very important for SAR and QSAR studies. However, 
the network can easily overfit. It will result in incorrect, 
biased predictions of new molecules. There is a number 
of methods that can improve BPN's generalization. Two 
of them, namely NN ensembles and network pruning, 
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were successfully used in this work. The others are 
training with a noise, stopping at a sensible level of Eg\ 
(judged either manually or by cross-validation), and 
distributed bottleneck, etc. We are investigating now 
the suitability of their use in structure-activity rela­
tionship problems. 

Estimating molecular parameters during learning can 
be easily incorporated into back-propagation training 
and seems to be a useful tool for the reasearcher. 
However, it cannot be used to draw a few significant 
parameters from a large parameter set because of a very 
large amount of calculations. Faster simple methods 
(i.e. based on cluster analysis) should be used for 
preprocessing a large data set. Final evaluation and 
choosing of the most significant parameters can be done 
by a network itself. 

The performance of neural networks has been com­
pared to the performance of several other methods, 
namely adaptive least squares,30 ̂ -nearest neighbors,31 

and linear learning machine32 (Tables 5 and 6). Al­
though the activity of B2 is usually predicted correctly, 
the performance of neural networks on learning and 
control sets of molecules is better. 
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